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Abstract

Internet censorship impacts nearly 25% of the global pop-
ulation, restricting freedom of expression and access to in-
formation. This paper evaluates six WebRTC-based pro-
tocols—SkypeMorph, CensorSpoofer, Protozoa, Stegozoa,
TorKameleon, and Snowflake—designed for censorship cir-
cumvention. It analyzes their evolution from protocol
mimicry to advanced steganographic methods, emphasizing
the trade-offs between security, usability, and performance.
While modern systems like Snowflake and TorKameleon im-
prove on accessibility and resistance to detection, architec-
tural vulnerabilities persist. This study highlights critical
insights and future directions for developing robust censor-
ship circumvention tools.

1 Introduction

Authoritarian governments increasingly use sophisticated
methods like deep packet inspection and protocol dis-
ruption to suppress dissent, affecting nearly 25% of the
global population[2]. Censored content often includes po-
litical speech, anonymity tools, and information-sharing
platforms[2, 16]. To combat these controls, researchers
are developing new censorship circumvention tools, with
WebRTC-based video calls offering a promising approach.
These tools leverage encrypted peer-to-peer connections to
obscure traffic, making it difficult for censors to detect and
block.
This paper evaluates six notable protocols (3) The objec-

tives are to: (1) provide a comprehensive description of these
methods, (2) assess their security, usability, and real-world
applicability, based on sections 2.2 objectives, and (3) offer
insights for future research and tool development. The anal-
ysis reveals a clear evolution from simple protocol mimicry
to more sophisticated steganographic techniques, highlight-
ing trade-offs between security, performance, and usability.
Despite advancements, no current system fully optimizes all
aspects, and future developments should focus on bridging
the gap between security and usability.

2 Background

2.1 Key Concepts

• Real-Time Communication and Secure Trans-
port

– WebRTC (Web Real-Time Communica-
tion): A real-time communication framework en-
abling secure, peer-to-peer multimedia exchanges
without additional plugins. Its widespread adop-
tion in applications like Discord makes it chal-
lenging for censors to block without collateral
damage[12, p. 15].

– Tunneling: Encapsulating one network protocol
within another to create a secure and private com-
munication channel over a public network, also it
makes the traffic appear to be legitimate[4, 15].

• Information Hiding Techniques
– Steganography: Embedding hidden information

within multimedia content (e.g. videos) to conceal
the existence of the data.[12, p. 8-14].

– Protocol Obfuscation: Modifies the behavior
of protocols to make them harder for censors to
detect. Examples include the use of non-standard
ports, data fragmentation, or the introduction of
noise[11, p. 98].

• Censorship Analysis and Countermeasures
– Correlation Attacks: These techniques aim to

de-anonymize users by analyzing traffic patterns.
Passive correlation attacks involve monitoring
traffic without direct interference, while active
correlation attacks inject identifiable marks into
traffic to trace its origin. Both approaches ex-
ploit traffic analysis vulnerabilities to compromise
anonymity[14, p. 1491].

– Deep Packet Inspection: DPI is a traffic anal-
ysis technique that examines the content of data
packets along with their headers, allowing censors
to identify traffic based on its content[9].

2.2 Key Traits of an Ideal Censorship Cir-
cumvention System

An ideal censorship-resistant system must meet three main
objectives:

2.2.1 Undetectability

Traffic should blend seamlessly with legitimate net-
work activity, resisting detection by censors. It must
withstand deep packet inspection, ensuring intercepted
data cannot be distinguished from regular traffic. Further-
more, avoidance of static or predictable communi-
cationsignatures is crucial to prevent identification and
blocking.
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Figure 1: Overview of the SkypeMorph Architecture. The
histograms show the distribution of packet sizes in Tor (at
the bottom) and Skype video (at the top).[11, p. 102]

2.2.2 User and Communication Security

Strong anonymity should disconnect user identities from
their network activity, ensuring user and communication se-
curity. Data confidentiality must guarantee that mes-
sages remain unintelligible to unauthorized parties. Fur-
thermore, resistance to both active and passive cor-
relation attacks is essential to protect users and their com-
munications.

2.2.3 Accessibility, scalability, and resilience

Systems must support diverse user bases while maintaining
low latency and high throughput. Decentralization is
vital to eliminate single points of failure and ensure contin-
ued operation even under adverse network conditions. Ease
of use is a priority, enabling users with minimal techni-
cal expertise to install, configure, and operate the system.
Compatibility across platforms and devices ensures broad
accessibility.

3 Summary of most relevant meth-
ods

In order to better understand the current methods of cen-
sorship circumvention, we will summarise those considered
most relevant, ordered according to their complexity and
evolution. The selected methods for the analysis are Skype-
Morph, CensorSpoofer, Protozoa, Stegozoa, TorKameleon,
and Snowflake. These methods have been ordered chrono-
logically, with earlier systems presented first, and also by
complexity, starting with simpler approaches and progress-
ing to more advanced techniques.

3.1 SkypeMorph

3.1.1 Obfuscation Technique

SkypeMorph disguises Tor traffic by mimicking Skype video
calls. It modifies traffic patterns, such as packet sizes and
timing intervals, to emulate legitimate Skype behavior.[11]

3.1.2 Internal Operation

The SkypeMorph process has two phases: Setup and Traffic
Modeling [11, p. 102].

Setup Phase: The client and bridge1 log into the Skype
API with unique credentials. The bridge listens for calls,
while the client prepares a connection. After exchanging
public keys and UDP ports via Skype text messages, both
generate a shared secret key, verified by hash exchange. If
successful, the client starts a brief video call, leaving the
UDP connection active. The bridge dynamically selects new
UDP ports to emulate Skype behavior[11, p. 102].

Traffic Modeling Phase: After setup, the video call
ends but the UDP connection is used to transmit Tor traffic
disguised as Skype traffic. A traffic shaping oracle modifies
Tor packets to mimic Skype patterns. SkypeMorph also
adds AES encryption and HMAC authentication atop Tor’s
existing encryption[11, p. 103].

3.1.3 Performance

SkypeMorph incurs a bandwidth overhead as it transmits
data volumes similar to a legitimate Skype video call, even
when Tor traffic is insufficient to fill the packets. Tests re-
veal an average download speed of 34 KB/s with a 28%
overhead[11, 4], which should be sufficient for standard in-
ternet browsing.

3.1.4 Censor Resistance and Vulnerabilities

The main vulnerability of SkypeMorph lies in the fact that,
despite its efforts to mimic Skype traffic, it does not actually
run the Skype application. This makes it susceptible to a
number of active and passive attacks that can distinguish it
from genuine Skype traffic[10].

It is vulnerable to pattern detection, inability to interact
with Skype’s supernode network and inability to fully mimic
Skype’s behavior. Being distinguishable even with passive
attacks[10, p. 70-72].

3.1.5 Usability

Using SkypeMorph can be challenging for average users due
to its relatively complex deployment and configuration re-
quirement [5].

3.1.6 Conclusion

In conclusion, SkypeMorph was a significant milestone in
traffic obfuscation and censorship resistance but has limited
relevance for modern use. Its partial imitation of Skype
traffic makes it detectable, even by less sophisticated cen-
sors, and its complex setup and reliance on pre-recorded
traces pose practical challenges. While innovative for its
time, SkypeMorph is neither safe nor reliable against to-
day’s advanced censorship methods.

1The bridge in SkypeMorph facilitates anonymous Tor access by
relaying client connections to the Tor network[11].
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Figure 2: The CensorSpoofer framework. The user pre-
tends to communicate with a fictitious external host, send-
ing URLs to the spoofer through an indirect low-bandwidth
channel (such as email or steganographic instant messag-
ing). The spoofer retrieves the blocked pages and injects
the censored data downstream to the user, spoofing the IP
of the fictitious host.[15]

3.2 CensorSpoofer

3.2.1 Obfuscation Technique

CensorSpoofer is a censorship evasion system that exploits
the asymmetry between upstream and downstream web traf-
fic. It uses indirect channels, like instant messaging or email,
for upstream traffic, where the user sends URLs, employing
steganography to hide requests within normal communica-
tions [15].

3.2.2 Internal Operation

CensorSpoofer uses IP spoofing2 and a ”dummy host” to de-
liver censored content over downstream traffic. It simulates
a VoIP communication between the user and the dummy
host, while the proxy server injects the censored web con-
tent, making it appear as if it comes from the dummy host
[15, p. 123].
An invitation system creates a trusted network, requiring

new users to be endorsed by existing members. Each user
receives unique identifiers for secure communication with
the spoofer, preventing compromised users from identifying
others [15, p. 126].
The selection of decoy (or dummy) hosts involves a so-

phisticated verification process, including port scanning to
confirm the availability of necessary services (SIP3, RTP,
RTCP) and validation of network paths to ensure commu-
nication plausibility. The system also continuously monitors
the status of these hosts to maintain robust communication.
These hosts are carefully selected to appear as legitimate
VoIP clients by verifying that the correct ports, such as SIP
for voice traffic, are open [15, p. 127].
To illustrate how this works, imagine a user wanting to

access a censored website. The user initiates a normal VoIP
call to their SIP identifier. The spoofer selects a dummy host
and responds with a manipulated OK message, establishing
a fake VoIP session. The user sends encrypted audio packets
(random content) to the decoy host while transmitting the
actual URLs through the steganographic upstream channel.
The spoofer retrieves the requested content and sends it back

2IP spoofing involves creating packets with a false source address.
3SIP is a communication protocol used primarily to establish, main-

tain and terminate real-time communication sessions.

disguised as VoIP traffic, appearing to come from the decoy
host.

3.2.3 Performance

Experimental results show that CensorSpoofer enabled
clients to download a blocked Wikipedia page in China.
Downloading the full 160 KB page took 27 seconds, while
the HTML file alone took 6 seconds [15]. Although Cen-
sorSpoofer takes longer for larger pages due to the need to
reshape traffic into VoIP, download times for smaller con-
tent, like HTML files, remain acceptable for basic internet
navigation.

3.2.4 Vulnerabilities

Over time, several vulnerabilities in the system have been
demonstrated, particularly related to SIP probing, as dis-
cussed in Houmansadr’s work [10]. For example, sending
invalid SIP messages causes a genuine SIP client to respond
with a ”400 BadRequest,” while CensorSpoofer fails to re-
spond, revealing its nature. This allows a censor to break the
system’s unobservability without affecting legitimate traffic
[10].

3.2.5 Usability

CensorSpoofer’s complex setup, including the need for an in-
vitation from an existing user, makes it challenging for non-
technical users. Additionally, it has never been deployed for
real-world use, remaining a proof of concept rather than an
accessible tool.

3.2.6 Conclusion

CensorSpoofer was an innovative censorship circumvention
system that introduced obfuscation techniques and asym-
metric architecture to hide web traffic and circumvent cen-
sorship controls. However, it is not secure by modern stan-
dards and should not be used.

3.3 Protozoa

3.3.1 Obfuscation Technique

Protozoa conceals transmitted information by replacing
data in encoded video frames with the payload of IP pack-
ets, occurring after video compression, and modifying the
WebRTC stack of the Chromium browser [4, p. 36].

3.3.2 Internal Operation

Protozoa creates a covert tunnel within a WebRTC video
call between a client in a censored region and a proxy in
a free-access region. Its architecture consists of four main
components[4]:

• Gateway Server: Runs on both client and proxy,
managing the covert tunnel[4].

• Encoder Service: Encapsulates the client’s IP pack-
ets into Protozoa messages, which are inserted into the
video stream[4].
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• Decoder Service: Extracts IP packets from Protozoa
messages at the proxy[4].

• SOCKS proxy server: Redirects client traffic to its
final destination on the Internet[4].

Protozoa works in two stages. In the first stage, the client
and proxy establish aWebRTC connection by sharing a URL
and password via an out-of-band channel (e.g., email). Once
both join the chat room, they initiate the video call (a P2P
connection)[4].
In the second stage, Protozoa replaces the video data with

IP packets. The client’s IP packets are encapsulated into
Protozoa messages and sent through the WebRTC call. The
proxy extracts the IP packets from the messages, which are
then forwarded to the SOCKS proxy server, directing the
data to its final destination[4].

3.3.3 Performance

Protozoa achieved a covert channel throughput of 1.4 Mbps
with 98.8% efficiency under normal network conditions, sup-
porting common Internet applications like web browsing and
bulk data transfer. Lab tests with a 640x480 video resolu-
tion reported an average throughput of 1422 Kbps [4, p.
42-43].

3.3.4 Vulnerabilities

Protozoa is designed to resist machine-learning-based traffic
analysis by state-level adversaries [4, p. 36], but it has crit-
ical vulnerabilities [7, 4]. Its reliance on peer-to-peer (P2P)
transmission is problematic, as many WebRTC applications
use relay servers, allowing adversaries controlling these gate-
ways to detect Protozoa traffic [12].
Additionally, Protozoa lacks anonymity mechanisms like

Tor, exposing users when detected and undermining its se-
curity objectives.

3.3.5 Usability

Deploying Protozoa can pose challenges, necessitating users
to compile a modified version of the Chromium browser, and
it lacks compatibility with Tor [14, p. 1491].

3.3.6 Conclusion

Protozoa demonstrates innovative strategies for evading cen-
sorship but is hampered by vulnerabilities make it less se-
cure for long-term use in modern, highly monitored environ-
ments.

3.4 Stegozoa

3.4.1 Obfuscation Technique

Stegozoa improves Protozoa’s security by embedding trans-
mitted information within video frames of WebRTC calls. It
uses Syndrome-Trellis Coding (STC), an advanced adaptive
steganographic method, combined with data encoding in the
least significant bits of Quantized Discrete Cosine Transform
(QDCT) coefficients of residual video frames. This tech-
nique modifies QDCT coefficients minimally, hiding data

without visible distortion, leveraging compression proper-
ties of the VP8 codec used by WebRTC [12, p. 18-20].

3.4.2 Internal Operation

Implemented as a library (libstegozoa) for WebRTC ap-
plications, Stegozoa intercepts video frames before encod-
ing, embedding covert data using the chosen steganographic
method. On the receiving side, the library extracts the hid-
den data from video frames[7].

To ensure efficient and reliable communication, Stegozoa
incorporates a message fragmentation and reassembly pro-
tocol for transmitting smaller packets through the covert
channel. It also includes a retransmission mechanism to
mitigate data loss [7].

3.4.3 Performance

Stegozoa’s performance is determined by its steganographic
embedding capacity. In lab tests, it achieved a throughput
of 11.4 Kbps with a high embedding capacity (α = 0.50),
sufficient for small data exchanges like Twitter feeds or
Wikipedia articles, but unsuitable for bulk data transfer or
live streaming [7].

The parameter α controls the fraction of embedding ca-
pacity used, balancing performance and security. Higher α
increases throughput but introduces more video distortion,
making the system more vulnerable to detection. Lower α
enhances security by reducing distortion and detection risks,
albeit at the cost of reduced throughput [7].

3.4.4 Vulnerabilities

Stegozoa’s primary vulnerability lies in its lack of robust-
ness to encrypted media manipulation [12]. Re-encoding the
video stream, whether intentional by adversaries or inciden-
tal via WebRTC gateways, can alter the DCT coefficients
used for embedding covert data, rendering messages unre-
coverable [12].

Despite this, Stegozoa demonstrates strong resistance
to traffic analysis and steganalysis. Experimental results
show detection classifiers struggled to differentiate Stegozoa
transmissions from legitimate WebRTC traffic, achieving an
AUC near 0.5—indicating detection was essentially random
[12, 7].

Thus, while Stegozoa’s reliability is limited under specific
conditions, it remains largely unobservable.

3.4.5 Usability

Stegozoa integrates as a library within WebRTC applica-
tions, simplifying usage for end users. Users only need to
initiate a video call with a trusted contact outside the
censored region, and Stegozoa will tunnel traffic through
the call. It has also been tested with various calling services
[7].

3.4.6 Conclusion

Stegozoa enhances Protozoa with advanced steganographic
techniques, improving resistance to traffic analysis and ste-
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Figure 3: Architecture of Stegozoa: The components of the system are highlighted in blue[7]

Figure 4: System Model and Workflow of the TorKameleon
Ecosystem. When using the pluggable transport without
proxies, the user establishes a direct connection to the
TorKameleon Tor Bridge through the TorKameleon plug-
gable transport client-side, which operates on the user’s lo-
cal device.[14]

ganalysis while simplifying usability. However, vulnerabili-
ties to video manipulation and recoding remain. Adopting
solutions proposed by Cruzat[12] could strengthen its ro-
bustness, ensuring better security and effectiveness in mod-
ern censorship evasion.

3.5 TorKameleon

3.5.1 Obfuscation Technique

TorKameleon is a tool designed to enhance Tor’s resistance
to correlation attacks. It operates as a Tor pluggable trans-
port, using multipath routing and traffic encapsulation to
hide user communication [14].

3.5.2 Internal Operation

TorKameleon implements K-anonymization by splitting
user traffic across multiple proxies in a pre-Tor network,
mixing it with the traffic of K additional users to reduce
correlation risks[14]. It operates in three modes:

• Pluggable Transport Mode: Acts as a pluggable
transport for Tor, hiding traffic in WebRTC or TLS

tunnels[14].
• Standalone Mode: Deploys a network of proxies to
route fragmented traffic, making correlation harder[14].

• Combined Mode: Combines both previous modes,
routing traffic through proxies before reaching Tor.[14].

In all modes, TorKameleon follows this process[14]:

1. Route Establishment: The user configures a proxy
route, or the TorKameleon gateway software determines
it automatically.

2. Proxy Connection: The user connects to the first
proxy in the route.

3. Encapsulation and Forwarding: Traffic is encapsu-
lated and sent through proxies until final proxy.

4. Connection to Tor: Final proxy sends traffic to Tor
via the TorKameleon bridge.

3.5.3 Performance

In the scenario where security is to be maximized,
TorKameleon has latencies between 530-655 ms, and a
througput of about 1500 Kbps. This is sufficient for surfing
the Internet[14].

3.5.4 Vulnerabilities

TorKameleon has been tested against passive and active cor-
relation attacks. It resists passive attacks, making its traffic
hard to identify, and also shows resistance to active attacks
with small data blocks. However, using larger data blocks
can create vulnerabilities[14]. With proper configuration,
TorKameleon is secure and unobservable, but its recent na-
ture means there may still be undetected vulnerabil-
ities.

3.5.5 Usability

The current TorKameleon implementation is a prototype,
designed as a proof of concept rather than a user-friendly
tool. It lacks integration with web browsers and requires
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manual configuration of components like WebRTC param-
eters, STUN/TURN servers, and the TorKameleon proxy.
The setup also involves tools like Docker and network config-
urations, making it unsuitable for non-technical users[1, 14].

3.5.6 Conclusion

TorKameleon demonstrates strong resistance against passive
and active correlation attacks in specific configurations, but
its security relies on proper setup. Due to its novelty and
limited peer review, further research and testing are needed
to uncover potential weaknesses.

3.6 Snowflake

3.6.1 Obfuscation Method

Snowflake does not rely on traditional information-hiding
techniques such as steganography or packet manipulation
to mask transmitted data. Its censorship resistance derives
from the use of a vast, constantly changing network of
temporary proxies known as ”snowflakes.” These prox-
ies, run by volunteers, act as intermediaries, relaying traffic
from censored clients via peer-to-peer WebRTC protocols to
a centralized bridge4. The information itself is not hidden;
instead, Snowflake’s strategy focuses on making communi-
cation harder to block by avoiding fixed censorship targets
[6].

3.6.2 Internal Operation

The connection process through Snowflake is divided into
three phases: rendezvous, peer-to-peer connection establish-
ment and data transfer[6].
The rendezvous phase begins when a client seeking to cir-

cumvent censorship sends a message to the broker, a central
server that facilitates connections between clients and prox-
ies. To avoid being blocked, the client uses an indirect com-
munication channel resistant to censorship, such as domain
fronting, AMP cache, or SQS.5. The broker manages prox-
ies that periodically check for clients requiring service. Upon
connection, the broker matches the client with an available
proxy, considering factors like NAT compatibility. It sends
the client’s SDP (Session Description Protocol) offer to the
proxy, which responds with its own SDP, completing the
match[6].
In the peer-to-peer connection establishment, the client

and proxy exchange information to form a direct connec-
tion via WebRTC, overcoming obstacles such as firewalls
and NAT. This uses ICE (Interactive Connectivity Estab-
lishment), which tests address combinations to find a work-
ing pair. Snowflake minimizes dependency on potentially

4The bridge in Snowflake is a centralized component that receives
traffic from proxies and forwards it to the final destination on the
Internet, acting as an intermediary between censored clients and the
outside world.[6]

5AMP cache and SQS act as hidden communication channels that
allow Snowflake clients to connect to the broker without being detected
by censors. Both methods are based on legitimate and widely used
services, making it difficult to selectively block them without causing
a negative impact on other services[6, p. 2638]

blockable TURN servers by implementing a NAT classifica-
tion system. Clients and proxies self-report their NAT types,
and the broker avoids pairing devices that require TURN.
Simultaneously, the proxy establishes a connection to the
bridge using WebSocket[6].

In the data transfer phase, the proxy relays information
between the client and the bridge without altering its con-
tent. A protocol stack secures the data: WebRTC provides
confidentiality via DTLS (Datagram Transport Layer Secu-
rity), while Turbo Tunnel ensures session reliability. If a
proxy fails, the client reconnects through a new rendezvous
without noticeable interruption. Finally, the bridge routes
the client’s traffic through the Tor network for additional
anonymity[6].

3.6.3 Performance

Although the authors do not provide precise details on
Snowflake’s resource consumption and performance, it is
described as an ultralightweight system[6]. Snowflake
has multiple implementations to suit different needs and
platforms such as a Web browser extension, Web Badge, a
command-line implementation and through the mobile app,
Orbot.

3.6.4 Vulnerabilities

Snowflake’s main vulnerability is its protocol fingerprint,
which allows censors to identify and block its connections.
During the rendezvous phase, patterns in TLS traffic can
reveal its use, and in the WebRTC connection, STUN mes-
sages and DTLS fingerprint exhibit distinct characteristics.
This can condition the system, as censors can block access
to the broker or disrupt WebRTC connections[6].

These vulnerabilities condition the system by allowing
censors to block access to the broker, disrupting the ini-
tial pairing between clients and proxies, or identify and
stop WebRTC connections, interrupting the communication
tunnel[6]. It also puts the identity of users at risk, however
snowflake is a modern protocol, under constant development
and the developers have already mentioned that they are
working on these problems[6, 13].

3.6.5 Usability

Snowflake is designed for a seamless user experience, requir-
ing no special configurations or technical knowledge from
the client. The client software automatically and transpar-
ently handles bridge connections, proxy selection, and data
transfer, offering an experience similar to other web appli-
cations [6]. It is also the only method introduced that sup-
ports mobile devices (through orbot)[6]. This is important
to increase its reach to as many users as possible.

3.6.6 Conclusion

Snowflake demonstrates a robust approach to censorship
resistance through its distributed and adaptive proxy net-
work. However, the protocol’s reliance on WebRTC and
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Figure 5: Architecture of Snowflake. The client contacts the broker through an indirect rendezvous channel with high
blocking resistance. The broker matches the client with one of the proxies that are currently polling. The client and proxy
connect to one another using WebRTC. The proxy connects to the bridge, then begins copying traffic in both directions.
If the proxy disappears, the client does another rendezvous and resumes its session with a new proxy.[6]

the specific vulnerabilities it introduces, specially finger-
print patterns, highlight areas requiring ongoing attention.
Addressing these vulnerabilities with enhanced obfuscation
techniques and dynamic fingerprint management is essential
to maintaining Snowflake’s efficacy in circumventing censor-
ship.

4 Answers to Key Questions

1. What factors should end users consider when se-
lecting a censorship-resistant system, given their
technical proficiency and available resources?

When selecting a censorship-resistant system, users
should consider their technical skills, the capabilities of
the censor, and their specific needs. The system should
be easy to use, resistant to blocking, and meet perfor-
mance requirements. The following factors are crucial:

• Ease of use: For non-technical users, simplicity
is key. Systems that require minimal setup and
function like common web applications are ideal.
Snowflake (also maybe Stegozoa) is the only
modern system that offers true accessibility
for end users.

• Resilience to blocking: The system should re-
sist common censorship techniques such as IP
blocking, DNS tampering, and deep packet in-
spection. Techniques like traffic obfuscation
and dynamic proxy rotation enhance resilience.
Snowflake uses temporary, ever-changing
proxies, making it difficult for censors to
block.

• Performance: Users should consider whether the
system meets their speed and latency needs. Sys-
tems that use steganography or tunneling may
have slower performance. For basic web brows-
ing, Stegozoa and Snowflake offer reliable per-
formance for low to moderate bandwidth tasks.

• Availability: A reliable system should offer re-
dundancy and adapt to evolving censorship tac-
tics. Dynamic networks and backup options im-
prove availability.

• Security: The system must protect user pri-
vacy and resist interception. Encryption and pro-
tection against man-in-the-middle attacks are es-
sential. Systems like Stegozoa, Snowflake, and
TorKameleon prioritize strong security features.

While Snowflake is currently the most accessible op-
tion for end users, it would be valuable to develop and
deploy an accessible implementation of TorKameleon to
provide more robust alternatives in the future.

2. How does the usability of different censorship
circumvention tools impact their adoption by
non-technical users?

The usability of censorship circumvention tools plays
a crucial role in their adoption by non-technical users.
Snowflake is highly accessible, requiring no configura-
tion and operating seamlessly through browser exten-
sions. Stegozoa simplifies adoption by integrating as
a library within WebRTC applications, making it in-
tuitive for those familiar with basic app installations.
TorKameleon, while promising, needs a more user-
friendly implementation to lower barriers to entry, high-
lighting the importance of simplicity and accessibility in
driving widespread adoption.

3. Under what circumstances might decentralized
architectures provide better censorship resis-
tance compared to more static solutions?

Decentralized architectures and adaptable systems like
TorKameleon or Snowflake offer stronger censorship
resistance in dynamic environments. These sys-
tems excel in scenarios such as when censors tar-
get known nodes—Snowflake’s temporary, frequently
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changing proxies make blocking difficult; when fac-
ing sophisticated traffic analysis—TorKameleon uses
adaptive traffic patterns and covert channels to evade
detection; when censorship is intermittent or local-
ized—decentralized systems reroute traffic seamlessly
through alternative nodes; and when user resources are
limited—Snowflake’s lightweight proxies eliminate the
need for complex configurations. These features make
them more resilient compared to static solutions, which
are easier to detect and block.

4. What challenges arise in balancing security and
performance when implementing techniques like
protocol obfuscation and steganography in real-
world applications?

• Security often demands complex obfuscation,
which can reduce performance (e.g., Stegozoa’s
low throughput).

• High-performance systems like Protozoa may sac-
rifice security by being vulnerable to traffic analy-
sis or correlation attacks.

• Striking a balance requires adaptive techniques
that optimize both aspects based on user needs
and network conditions.

5. How can developers of censorship circumvention
tools ensure adaptability to evolving censorship
techniques and network conditions?

Developers can ensure adaptability by adopting a multi-
faceted approach that emphasizes flexibility, resilience,
and continuous learning. Key strategies include:

• Modular Design: Implement modular architec-
tures for easy updates and integration of new tech-
niques.

• Decentralization: Use decentralized networks,
to distribute communication and avoid single
points of failure.

• Obfuscation Techniques: Employ multiple
methods of traffic obfuscation and dynamically
switch between them based on network conditions.

• Continuous Monitoring and Feedback: Reg-
ularly monitor censorship tactics and gather user
feedback to identify new challenges and refine tools
accordingly.

• Collaboration: Foster collaboration between de-
velopers, researchers, and users to share knowl-
edge, identify vulnerabilities, and develop effective
circumvention strategies.

• Ease of Use: Prioritize user-friendly interfaces
and minimal configuration requirements to ensure
broad adoption, even by non-technical users.

By incorporating these principles, developers can create
adaptable and resilient tools that respond effectively to
evolving censorship techniques and network conditions.

5 Future Trends and Challenges

The future of censorship circumvention tools will be shaped
by the dynamic interplay of advancing technology, evolving
censorship techniques, and the shifting needs of users. Below
are key trends and challenges anticipated in this domain:

Advancing Censorship Techniques

Censors are likely to adopt more sophisticated technologies,
including machine learning (as expòsed on Barrada’s work
[3])and big data analytics, to detect and block circumvention
efforts. Techniques such as deep packet inspection (DPI)
and advanced traffic analysis will present significant hur-
dles. Developers must innovate to counteract these mea-
sures, employing obfuscation, mimicry, and other advanced
techniques to evade detection.

Mobile-Centric Solutions

The proliferation of mobile devices as primary internet ac-
cess points, with 85% of internet users accessing the web
via mobile devices[8], particularly in heavily censored re-
gions, necessitates the development of lightweight, resource-
efficient tools optimized for mobile platforms. These tools
must operate effectively on networks with low bandwidth
and high latency.

Improving Usability

To achieve widespread adoption, tools must be accessible
to non-technical users. This involves simplifying configura-
tion, offering intuitive interfaces, and minimizing the need
for user intervention. Usability-focused design will enhance
the impact of these tools, particularly in regions with low
technological literacy.

Policy and Advocacy Efforts

In addition to technical innovation, advocating for policies
that support a free and open internet is crucial. Efforts
should focus on promoting digital rights, opposing restric-
tive legislation, and raising awareness of censorship issues
globally.

6 Conclusion

This comprehensive survey has examined the evolution of
video call-based censorship circumvention methods, from
early protocol mimicry attempts like SkypeMorph to mod-
ern steganographic approaches like Stegozoa and hybrid sys-
tems like Snowflake. This analysis reveals several key find-
ings about the state and trajectory of this field.

The progression in circumvention techniques shows a clear
trend toward more sophisticated approaches, moving from
simple protocol mimicry to advanced steganographic meth-
ods and hybrid architectures. However, this analysis consis-
tently reveals an inherent trade-off between security and per-
formance across these systems. High-throughput solutions
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like Protozoa (1.4 Mbps)[4] prove more vulnerable to detec-
tion, while more secure systems like Stegozoa (11.4 Kbps)[7]
operate at significantly lower speeds.
The examination of system vulnerabilities demonstrates

that modern circumvention tools must address multiple
threat vectors simultaneously, from traffic analysis to cor-
relation attacks. While recent systems like Snowflake and
TorKameleon show more comprehensive approaches to se-
curity, their reliance on centralized components introduces
potential bottlenecks and points of failure[6, 14].
Perhaps most significantly, this survey highlights a per-

sistent gap between theoretical capabilities and practical
usability. Despite the technical sophistication of systems
like TorKameleon, only Snowflake achieves sufficient acces-
sibility for non-technical users, though this comes with its
own security trade-offs. This disparity between security and
usability remains a fundamental challenge that future devel-
opments in the field must address.
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Vı́tor Nunes. Poking a hole in the wall: Efficient
censorship-resistant internet communications by para-
sitizing on webrtc. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communica-
tions Security, page 35–48, 2020.

[5] BlizzardPlus. Code talker tunnel. https:

//github.com/blizzardplus/Code-Talker-Tunnel/

tree/master/source. Accessed: 2024-12-08.

[6] John Fifield. Analyzing snowflake protocols. In Pro-
ceedings of the 33rd USENIX Security Symposium,
Philadelphia, PA, USA, August 14–16 2024. USENIX
Association. Accessed: 2024-12-08.

[7] Gabriel Figueira, Diogo Barradas, and Nuno Santos.
Stegozoa: Enhancing webrtc covert channels with video
steganography for internet censorship circumvention.
In Proceedings of the 2022 ACM on Asia Confer-
ence on Computer and Communications Security, page
1154–1167, 2022.

[8] thinkwithgoogle.com. https://www.

thinkwithgoogle.com/intl/es-es/insights/

tendencias-de-consumo/el-m%C3%B3vil-l%C3%

ADder-en-el-consumo-de-internet/, 2017. [Ac-
cessed 13-01-2025].

[9] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and
Rob Johnson. Games without frontiers: Investigating
video games as a covert channel. In 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
page 63–77. IEEE, 2016.

[10] Amir Houmansadr, Chad Brubaker, and Vitaly
Shmatikov. The parrot is dead: Observing unobserv-
able network communications. In 2013 IEEE Sympo-
sium on Security and Privacy, page 65–79. IEEE, 2013.

[11] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad
Derakhshani, and Ian Goldberg. Skypemorph: Proto-
col obfuscation for tor bridges. In Proceedings of the
2012 ACM conference on Computer and communica-
tions security, page 97–108, 2012.

[12] Adrian Cruzat La Rosa. No title. Re-encoding Resis-
tance: Towards Robust Covert Channels over WebRTC
Video Streaming, 2024.

[13] the tor project. Snowflake repositorie. https:

//gitlab.torproject.org/tpo/anti-censorship/

pluggable-transports/snowflake. Accessed: 2025-
01-10.

[14] Afonso Vilalonga, João S. Resende, and Henrique
Domingos. Torkameleon: Improving tor’s censorship re-
sistance with k-anonymization and media-based covert
channels. In 2023 IEEE 22nd International Confer-
ence on Trust, Security and Privacy in Computing and
Communications (TrustCom), page 1490–1495. IEEE,
2023.

[15] Qiyan Wang, Xun Gong, Giang TK Nguyen, Amir
Houmansadr, and Nikita Borisov. Censorspoofer:
asymmetric communication using ip spoofing for
censorship-resistant web browsing. In Proceedings of
the 2012 ACM conference on Computer and communi-
cations security, page 121–132, 2012.

[16] Barney Warf. Geographies of global internet censor-
ship. GeoJournal, 76:1–23, 2011.

9

https://github.com/AfonsoVilalonga/TorKameleon
https://github.com/AfonsoVilalonga/TorKameleon
https://github.com/blizzardplus/Code-Talker-Tunnel/tree/master/source
https://github.com/blizzardplus/Code-Talker-Tunnel/tree/master/source
https://github.com/blizzardplus/Code-Talker-Tunnel/tree/master/source
https://www.thinkwithgoogle.com/intl/es-es/insights/tendencias-de-consumo/el-m%C3%B3vil-l%C3%ADder-en-el-consumo-de-internet/
https://www.thinkwithgoogle.com/intl/es-es/insights/tendencias-de-consumo/el-m%C3%B3vil-l%C3%ADder-en-el-consumo-de-internet/
https://www.thinkwithgoogle.com/intl/es-es/insights/tendencias-de-consumo/el-m%C3%B3vil-l%C3%ADder-en-el-consumo-de-internet/
https://www.thinkwithgoogle.com/intl/es-es/insights/tendencias-de-consumo/el-m%C3%B3vil-l%C3%ADder-en-el-consumo-de-internet/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake

	Introduction
	Background
	Key Concepts
	Key Traits of an Ideal Censorship Circumvention System
	Undetectability
	User and Communication Security
	Accessibility, scalability, and resilience


	Summary of most relevant methods
	SkypeMorph
	Obfuscation Technique
	Internal Operation
	Performance
	Censor Resistance and Vulnerabilities
	Usability
	Conclusion

	CensorSpoofer
	Obfuscation Technique
	Internal Operation
	Performance
	Vulnerabilities
	Usability
	Conclusion

	Protozoa
	Obfuscation Technique
	Internal Operation
	Performance
	Vulnerabilities
	Usability
	Conclusion

	Stegozoa
	Obfuscation Technique
	Internal Operation
	Performance
	Vulnerabilities
	Usability
	Conclusion

	TorKameleon
	Obfuscation Technique
	Internal Operation
	Performance
	Vulnerabilities
	Usability
	Conclusion

	Snowflake
	Obfuscation Method
	Internal Operation
	Performance
	Vulnerabilities
	Usability
	Conclusion


	Answers to Key Questions
	Future Trends and Challenges
	Conclusion

